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Abstract The cell assignment problem is combinato-

rial, with increased complexity when it is tackled con-

sidering resource allocation. This paper models joint

cell assignment and resource allocation for cellular het-

erogeneous networks, and formalizes cell assignment as

an optimization problem. Exact algorithms can find op-

timal solutions to the cell assignment problem, but their

execution time increases drastically with realistic net-

work deployments. In turn, heuristics are able to find

solutions in reasonable execution times, but they get

usually stuck in local optima, thus failing to find opti-

mal solutions. Metaheuristic approaches have been suc-

cessful in finding solutions closer to the optimum one to

combinatorial problems for large instances. In this pa-

per we propose a fast and efficient heuristic that yields

very competitive cell assignment solutions compared
to those obtained with three of the most widely-used

metaheuristics, which are known to find solutions close

to the optimum due to the nature of their search space

exploration. Our heuristic approach adds energy ex-

penditure reduction in its algorithmic design. Through

simulation and formal statistical analysis, the proposed

scheme has been proved to produce efficient assign-

ments in terms of the number of served users, resource

1Javier Rubio-Loyola, Christian Aguilar-Fuster
CINVESTAV-Tamaulipas, Cd. Victoria Tamaulipas
E-mail: {jrubio,caguilar}@tamps.cinvestav.mx

2Luis Diez, Ramon Agüero
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allocation and energy savings, while being an order of

magnitude faster than metaheuritsic-based approaches.
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1 Introduction

Current forecasts indicate that wireless traffic demand

will continuously increase in the near future, reaching

more than 4.5 ZB in the next years [8]. In order to pro-

vide the required capacity, 5G networks are expected to

bring a thousandfold capacity increase, in comparison

to current 4G technologies [19]. Among other solutions,

network densification stands out as one of the more rel-

evant approaches to ensure such capacity increase [3, 2].

Network densification is achieved by both spectrum

and spatial densification. In the former case, potentially

non-contiguous frequency chunks are used together by

the same or different communication technologies [3,

20], which would lead to multi-connectivity scenarios [20].

On the other hand, spatial densification is obtained by

deploying a large number of heterogeneous access ele-

ments, such as small-cells or WiFi access points, leading

to the so-called heterogeneous networks.

Bearing this scenario in mind, it becomes highly im-

portant to adapt network management solutions that

will appropriately exploit the additional capacity brought

by heterogeneous networks. Among the different tech-

niques, access selection and resource allocation play a

fundamental role to ensure an efficient usage of the ra-

dio resources. Hence, it is sensible for both techniques

to be tightly coordinated in joint solutions [22, 1]. In ad-

dition, the appearance of new network techniques and
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architectures, such as SDN [28] and C-RAN [18], will al-

low the use of more centralized algorithms, which would

actually facilitate such tight coordination among the el-

ements of the dense network.

Furthermore, the higher communication capacity of-

fered by highly dense networks, along with the corre-

sponding coordination requirements, poses new chal-

lenges, with achieving energy efficiency as one of the

most relevant. In this sense, compared to traditional

networks, where access selection and resource alloca-

tion were analyzed by simply considering the wireless

access segment, now their impact over backhaul links

(access elements towards the network) is also studied,

to optimize the efficiency of both radio and energy re-

sources [15, 16]. In particular, the possibility to switch

off access elements when they are not needed is seen

as one of the most promising techniques [11], since it

would reduce energy consumption in both, the access

and the backhaul network segments.

This paper models joint cell assignment and resource

allocation for cellular heterogeneous networks, and for-

malizes cell assignment as a combinatorial optimiza-

tion problem. Generally speaking, combinatorial opti-

mization problems can be solved with exact, heuris-

tic and metaheuristic approaches. Exact algorithms can

find optimal solutions however, their execution time in-

creases drastically so that their application is unfeasi-

ble with realistic deployments, i.e. larger amounts of

base stations and mobile users. It is widely accepted

that heuristics are able to find solutions to practical in-

stances of optimization problems with reasonable exe-

cution times, but they get usually stuck in local optima

hence failing to find appropriate solutions. It is also

widely accepted that metaheuristic-based approaches

are successful in finding solutions closer to the opti-

mum to combinatorial problems for large instances, at

the expense of larger execution times [5].

In this paper we propose a fast and efficient heuris-

tic algorithm for joint cell assignment and resource al-

location in dense heterogeneous networks that yields

very competitive cell assignment solutions, compared

to the ones obtained with three of the most widely-

used metaheuristics namely, Harmony Search (HS) [13],

Simulated annealing (SA) [26], and Genetic algorithm

(GA) [14]. These three metaheuristics have been se-

lected for comparison with our approach since they

have been successfully used to solve a wide range of ap-

plications, including large-scale combinatorial and con-

strained optimizations, like the one addressed in this

paper. The proposed solution aims to optimize the ef-

ficiency of radio resources, while reducing energy con-

sumption by switching off unused cells. Through sim-

ulation and formal statistical analysis, the proposed
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Fig. 1 Simplified scheme of the C-RAN architecture.

scheme has been proven to produce efficient assign-

ments in terms of the number of served users, resource

allocation and energy savings, while being an order of

magnitude faster than metaheuritsic-based approaches.

As a global optimization solution, the algorithm is con-

ceived for centralized architectures (i.e. C-RAN) where

cooperation among access elements is possible. As de-

picted in Figure 1, in C-RAN the functionalities of the

base stations are virtualized and centralized in cloud

units. Hence, communication delays between access el-

ements are minimized, enabling tight coordination at

different layers of the protocol stack. In this scenario,

centralized algorithms may be exploited, since it be-

comes possible to gather an overall knowledge of the

network.

The contributions of this paper are enumerated be-

low:

– General modeling of the joint cell assignment and

resource allocation problem for cellular networks.

– Adding energy expenditure reduction within the model

to foster cell switching-off.

– Considering actual traffic demand, opposed to full-

buffer or saturation condition.

– Proposal of a fast heuristic solution for the cell as-

signment problem. The algorithm is afterwards ex-

tended to include the possibility to switch off cells

(energy minimization).

– Performance comparison of the heuristic-based so-

lution with other approaches that are known to pro-

duce more efficient solutions (e.g. three metaheuristic-

based solutions), in terms of cell assignment effi-

ciency, energy consumption, and execution time.

The most noteworthy contribution is that we use a

novel optimization technique, which is able to yield sim-

ilar results to other metaheuristic-based solutions, but

is an order of magnitude faster. We exploit it to solve a

joint cellular assignment/resource allocation problem,

which has been tackled using different approaches.

The rest of the paper is organized as follows. In Sec-

tion 2 we revise the current state of the art regarding

the joint problem of access selection and resource allo-

cation, and we discuss the need for heuristic solutions.



Fast and Efficient Energy-Oriented Cell Assignment in Heterogeneous Networks 3

Then, we define the system model in Section 3, where

we pose the aforementioned problem, and we extend it

to include energy efficiency. In Section 4 we describe the

metaheuristics Harmony Search (HS) [13], Simulated

annealing (SA) [26], and Genetic algorithm (GA) [14]

addressing the optimization problem modeled in Sec-

tion 3. Afterwards, our solution is introduced in Sec-

tion 5, highlighting its different modules for cell assign-

ment and energy saving while addressing the combi-

natorial optimization problem modelled in Section 3.

The evaluation scenario and performance analysis are

depicted in Sections 6 and 7, respectively. Finally, Sec-

tion 8 concludes the paper, summarizing the work and

providing an outlook on the aspects that will be tackled

in our future research.

2 State of the art

Several studies have looked at the joint problem of user

association and resource allocation over heterogeneous

networks. Worthy of mention among them, are those by

Ye et al. [31] and Bu et al. [7], due to their relevance

and similarities with our proposed scheme. As stated

in [31], the traditional two-fold problem of cellular net-

works becomes a complex combinatorial problem: first,

the base station that will be associated to each user

has to be decided, and afterwards the amount of radio

resources to be allocated to each user has to be calcu-

lated. To solve this problem, the authors of [31] propose

maximizing the sum of transmitted rate logarithms of

all active users. This is the most suitable criterion for

achieving proportional fairness in resource usage. They

also show that with the applied maximization criterion,

the optimal resource allocation is the equal allocation,

where the base station equally divides the time it uses

to transmit to each of its users. They assume full-buffer

condition, where all base stations always have frames

to be transmitted. This strongly simplifies the model-

ing of co-channel interference, although it might not be

always realistic. This combinatorial problem can be re-

laxed, allowing any user to be connected to more than

one base station, leading to a linear program, which

yields solutions close to the optimal one. In this sense,

there might be some cases where a user is connected to

more than one BS, and this can be avoided, in a sec-

ond step, by applying different heuristics (for instance,

rounding). In this way we can easily find the best as-

signment for each user, considering those obtained with

the aforementioned linear program.

In a similar way, the authors of [7] try to ensure pro-

portional fairness among users, by also using the same

utility function (sum of transmission rate logarithms).

The main novelty of this second approach is that it

assumes that the base station association is known a

priori. Hence, the problem can be reformulated as a

maximum weighted bipartite matching problem, to find

the matching between all users and all base stations,

maximizing the aforementioned criterion. As it is well

known, the bipartite matching problem can be solved

in polynomial time. Since the authors assumed that the

number of connections to each base station was known

beforehand, the matching problem needs to be solved

with all possible combinations or, at least, considering

the feasible combinations according to current users’

location. The authors propose using some heuristics to

solve it on-line.

As a practical alternative for solving the two-fold

problem, while ensuring proportional fairness, some au-

thors, including Ye et al. [31], have proposed adding a

bias to the pilot signal received by the mobile termi-

nal from small-cells in a heterogeneous network. The

resulting pilot strength will be used to decide the base

station associated that will be to each user. The authors

of [31] conclude that this strategy leads to a behavior

that is quite close to that analytically obtained after ap-

plying the maximization criterion. In a similar way, the

work presented in [23], using the biased signal strength

strategy, with an iterative procedure to establish the

best bias to be applied to each base station, yields the

greatest Jain fairness index, thus ensuring load balanc-

ing in heterogeneous LTE networks.

More recently, joint user assignment and resource al-

location has been tackled in dense networks with mobile

edge computing [22]. Although the application scenario

differs from the ones used by the works discussed above,

the underlying system model boils down to a similar

optimization problem. In particular, the authors in [22]

propose a sequential solution where user assignment is

performed first, to afterwards solve the resource alloca-

tion problem, by exploiting quantum-behaved particle

swarm optimization (QPSO). Similarly, in [25] the two-

fold problem arises in device-to-device scenarios, where

user demand needs to be satisfied. Opposed to previ-

ous studies, the initial problem is relaxed, leading to

a convex version that would then yield a suboptimal

solution.

Our work differs from the previously discussed pa-

pers in various aspects. First, we propose a more real-

istic scenario based on how cellular networks operate.

In particular, the two-fold problem considers that each

individual user has a certain traffic demand, instead

of equally sharing the transmission time of each base

station among all associated users. Consequently, the

co-channel interference cannot be simplified, since not

all base stations will be transmitting all the time (i.e.

we do not consider full buffer situation). It is worth
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highlighting that when user demand is assumed (i.e. no

saturation conditions), it has been shown [6] that the

coupled resource allocation problem resulting from the

co-channel interference cannot be easily solved (i.e. it

is not convex).

Other works exploiting different optimization tech-

niques focus on resource allocation, paying special at-

tention to physical layer aspects, thus exploiting low-

level techniques such as interference alignment. For in-

stance, in [32] a novel technique is proposed to optimize

power consumption in opportunistic communications,

while power allocation is addressed in [33] and [34], ex-

ploiting cognitive radio systems and artificial noise re-

spectively. Similarly, Wu et al. [27] propose a game the-

oretical solution to optimize the resource allocation in

heterogeneous networks considering the required QoS.

It is worth noting that these works fundamentally dif-

fer from our approach in terms of the level of system

abstraction. In this sense, they model low level mecha-

nisms in great detail, while other procedures, happen-

ing at a larger pace (for instance, access selection), are

assumed to be known.

On the other hand, other studies, such as [29] have

focused on optimizing the access selection and handover

procedures, while the resource allocation and energy

consumption are not considered. Finally, there exist

studies that aim to optimize the global energy efficiency

in heterogeneous networks, by improving network plan-

ning, while assuring some level of quality of service. For

instance, the authors of [30] analyze the optimal distri-

bution of small cells in heterogeneous networks, exploit-

ing stochastic geometry techniques, with the goal to re-

duce energy drain. Although this work shares with our

proposal the same overall target, it focuses on network

characterization, rather than proposing an algorithm to

be exploited to leverage the sought optimization.

In Table 1 we summarize the above comparison, by

indicating the particular features of the proposed ap-

proach that are covered by the works that are closer

to ours. In particular, we analyzed the following pa-

rameters: joint access selection and resource allocation;

heterogeneous networks scenario; whether energy effi-

ciency is addressed; and whether the proposed solution

takes into account the actual traffic demand of users,

in contrast to saturation of full-buffer conditions.

In addition, as mentioned earlier, the proposed so-

lution also seeks to minimize the number of required

access elements that are needed to ensure user satis-

faction. Due to the additional complexity of the pro-

posed working scenario, a novel heuristic approach will

be introduced, and its performance will be compared

with three of the most widely used metaheuristic ap-

proaches, as was previously mentioned, when solving

Table 1 Summary of the features addressed by the related
work.

[31] [7] [23] [22] [25] [33] [34] [32] [27]

Joint AS/RA X X X X X

HetNet Scen. X X X X

Energy Eff. X X X X

Traffic Demand X X X

the corresponding maximization problem. It is worth

mentioning that heuristic-based approaches are able to

find solutions to practical optimization problems with

reasonable execution times, but they usually get stuck

in local optima, hence failing to find better solutions,

and metaheuristic approaches have been successful in

finding closer solutions to the optimum to combinato-

rial problems [5], such as the one we tackle in this work.

3 System Model

We consider a scenario comprising a set of users and

base stations, U and B respectively. We define a set

of user categories M, so that Um ⊆ U represents the

subset of users belonging to the category m ∈ M, and⋃
m∈M

Um = U . Similarly, N holds for the set of base sta-

tion categories, so Bn ⊆ B is the subset of base stations

of category n ∈ N , and
⋃
n∈N
Bn = B

In this work, we assume users run services with a

known traffic demand (i.e. non-elastic services), that

has to be satisfied by one base station. Then, we de-

fine the traffic demand of each user according to the

category they belong to, so that the traffic demand of

user i ∈ U is defined as ci := {cm | m ∈ M, i ∈ Um}.
In a similar way, we define the capacity of each base

station in accordance with its category. Therefore, the

total amount of radio resources of the base station j,

Rj , is defined as follows: Rj := {Rn | n ∈ N , j ∈ Bn}.
To satisfy the traffic demand of each user i, the cor-

responding serving base station j needs to allocate a

number of radio resources ri,j . Then, we define αi,j as

the ratio between the resources allocated to user i, and

the total capacity Rj . It is worth noting that the map-

ping between traffic demand and required number of

resources is not direct, but it depends on the state of

the radio connection.

Then, we model the access selection procedure with

a binary variable, bi,j , that identifies the base station

user i is connected to, as defined in Eq. 1. Besides, for

each pair of user and base station, (i, j), we denote γi,j
as the power user i receives from base station j.
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bij =

{
1 j is the serving base station of user i

0 otherwise
(1)

The amount of resources rij to be allocated to each

user depends on the spectral efficiency, that in turn

depends on the SINR experienced by such user. In this

work, we consider that base stations use a random sched-

uler, so that the amount of interference power coming

from a cell is proportional to the load of such cell. In

such case, we can define the SINR of the user i when

connected to base station j as follows:

SINRi,j =
γi,j

σ2 + αi,j
∑

k∈B/j

[(∑
l∈U

bl,kαl,k

)
γi,k

] (2)

where σ2 corresponds to the system white additive noise

power. As can be observed in Eq. 2, the interference is

modulated by (1) αi,j which represents the ratio of re-

sources granted by the serving cell, and (2)
∑
bl,kαl,k,

which represents the load of interfering base stations.

As can be seen, when a cell does not assign any re-

sources, it does not induce interference. Afterwards, the

spectral efficiency of the connection between user i and

base station j can be straightforwardly computed, fol-

lowing the Shannon-Hartley’s channel capacity formula

[17], as shown in Eq. 3. This parameter, measured in

bits per second and hertz, permits calculating the num-

ber of resources that should be allocated to each user,

according to its traffic demand, the bandwidth of the

resources in the system, BW , and the connection state.

ηi,j = log2 (1 + SINRi,j) (3)

Our aim is to optimize the access selection, consid-

ering multiple criteria. First and foremost, we want to

maximize the number of users whose traffic demand is

satisfied. In addition, we seek to reduce the usage of re-

sources, by selecting efficient connections, which boils

down to higher SINR levels. It is worth recalling that

the greatest possible SINR values correspond to the sit-

uation where a user does not receive any interference,

so that the interfering base station does not assign any

resource, and would be thus switched off.

To take into account the connection efficiency crite-

rion, we define in Eq. 4 the connection efficiency, ui,j as

the ratio between the experienced SINR and the SNR,

corresponding to the situation where interfering base

stations do not allocate any resource. As can be ob-

served, the connection efficiency takes the value 1 when

the user does not experience any interference (i.e. min-

imum amount of allocated resources to satisfy the de-

mand), and tends to 0 as the interfering base station

becomes more loaded.

ui =
SINRi,j
SNRi,j

=
SINRi,j

γi,j
σ2

=1 +
αi,j
σ2

∑
k∈B/j

[(∑
l∈U

bl,kαl,k

)
γi,k

]
−1

(4)

Altogether, we define a coupled assignment and re-

source allocation problem (Problem 1), where bi,j are

the variables related to the access selection procedure,

and αi,j the ones that define the resource allocation.

Problem 1 (Coupled user assignment and resource

allocation problem)

max
∑

i,j∈U,B
ω1bi,j + ω2(ui,j − αi,j) (5)

s.t.
∑
j∈B

bi,j ≤ 1 ∀i ∈ U (6)

∑
i∈U

αi,j ≤ 1 ∀j ∈ B (7)

ci ≤
∑
j∈B

bi,jαi,jRjBWηi,j ∀i ∈ U (8)

0 ≤ ωt ≤ 1 t ∈ {1, 2} (9)

The utility function in Eq. 5 is a weighted summa-

tion whose first term aims to maximize the number of

connected users, while the second one minimizes the

number of required base stations and maximizes the

spectral efficiency by means of the connection utility. In

addition, since both terms are bounded between 0 and

1, it is possible to prioritize one criterion over the other

by tuning the weighting parameters. In particular, in

this work we will prioritize the number of connections

over the other criteria, so that ω1 � ω2.

Furthermore, we include three constraints within

the problem: the first two correspond to the access

selection procedure, while the third one related to re-

source allocation. In particular, Eq. 6 ensures that each

user only connects to a single base station, while Eq. 7

ensures that the capacity of base stations is not ex-

ceeded. On the other hand, Eq. 8 guarantees that the

traffic demand of each user is satisfied. It can be ob-

served, that the access selection strategy depends on

the resource allocation, and vice versa, so that it is not

possible to separate the problem variables. In addition
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the optimization problem has binary integer variables,

and it is not convex.

Hence, in order to solve Problem 1 three options

are possible [5]: (1) exact algorithms can find optimal

solutions to the problem, however their execution time

increases drastically with practical instances and they

become prohibitive in realistic cell assignment scenar-

ios; (2) heuristics are able to find solutions to practical

assignment scenarios of the problem with reasonable

execution times, however they usually get stuck in lo-

cal optima, hence failing to find better solutions; (3)

metaheuristic approaches have been successful in find-

ing closer solutions to the optimum to combinatorial

problems at the expense of execution time. In this pa-

per we propose an heuristic approach to solve our cell

assignment optimization problem with two aims: (1) to

be fast so that it can be applied in practical cell assign-

ment scenarios; and (2) to be efficient so that it can find

solutions close to those obtained with metaheuristic-

based approaches. To evaluate our approach, we con-

sider the following metrics: percentage of served users,

profit, active cells, and execution time.

The served users metric indicates the number of ef-

fectively connected users. This metric is formally de-

fined as
∑|U|

i=0 bi
|U| where bi is a binary variable that equals

1 when the user i has been assigned to one base station

that satisfies his demand, and does not exceed the re-

sources of the base station, otherwise it equals 0. We

define the profit as the relationship between uij and αij
(utility-cost). Profit is formally defined as

∑
i,j∈U,B

(ui,j − αi,j).

We define the active cells metric as the number of base

stations that have, at least, one assigned user, and we

formally define it as
∑|B|
j=0 bj , where bj is a binary vari-

able that equals 1 when the base station j has at least

one user assigned, otherwise it equals 0. Finally, the ex-

ecution time measures the time that an algorithm takes

to solve each test instance, namely to define the most

appropriate cell assignment.

4 Metaheuristic-based cell assignment

In this Section, we describe basic concepts of metaheuristic-

based optimization and the solutions that have been

used to compare our proposed cell assignment approach.

4.1 Metaheuristic optimization

Optimization refers to the process of searching and com-

paring feasible solutions until no better solution can

be found. It sometimes involves the need to not only

reach the best value for a given objective function (or

set of objective functions), but also to satisfy a cer-

tain set of predefined requirements, called constraints.

Since most engineering and scientific applications in-

volve a complex optimization problem to be solved, a

number of optimization methods have been proposed.

Metaheuristics encompass a set of optimization tech-

niques that have been found to be effective in locating

solutions close to the global optimum in several prob-

lems. Optimization metaheuristics can be classified into

single-solution-based and population-based [24].

In general, optimization metaheuristics generate new

solutions (i.e. cell assignments in the context of this pa-

per) by applying variation operators to previously gen-

erated solutions. Then, a selection process between the

former and the generated solutions is performed to keep

moving the found solutions towards the optimum. Evo-

lutionary computation (EC) comprises a set of meta-

heuristics that have drawn inspiration from the process

of natural evolution [14]. EC techniques have gained

popularity in recent years, since they have shown flexi-

bility, adaptability, and good performance [9]

The implementation of the evolution metaphor on

EC is described as follows [14]: given a population of

individuals, an environment with limited resources and

the pressure in the environment causes a natural selec-

tion. This mechanism raises the fitness of the popula-

tion. Given a function to be optimized, a set of can-

didate solutions is created and evaluated to measure

their fitness in the given environment. Based on this

ability, a set of solutions is selected to feed the varia-

tion operators, to generate new solutions. These newly

generated solutions, called offspring, may compete (or

not) against their parents to take their place in the next

generation. The above process is repeated until a solu-
tion with good quality is found (or some criterion is

reached).

4.2 Specific metaheuristics

This Section describes the metaheuristics that have been

compared wiith our proposed cell assignment approach,

namely Harmony Search (HS), Simulated annealing (SA),

and Genetic algorithm (GA). These are popular meta-

heuristics that have been successfully used to solve a

wide range of combinatorial problems, exhibiting a good

performance [9].

GA is a metaheuristic inspired by the theory of nat-

ural evolution [14]. Although there are many variants

of GA’s, they share basic mechanisms, which are illus-

trated in Algorithm 1.

In the GA customized for energy-aware cellular as-

signment, each individual is represented by a binary
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Algorithm 1: Genetic algorithm.

Data: n, P [n], pc,pm // n No. of candidate solutions,
P [n] list of candidate solutions, pc crossover
probability, pm mutation probability

Result: the best individual of all populations
1 t← 0;
2 Step 1 Initialize population P [n] randomly with

n individuals;
3 while t ≤ iterationsmax do
4 t← t+ 1;
5 Step 2 Calculate aptitude f(x) for each

individual x ⊂ P [n];
6 Step 3 Select parents of next generation

based on their aptitude C(x);
7 Step 4 Crossover selected partner based on

pc to generate new population;
8 Step 5 Mutate individuals of new generation

based on pm.;

9 end
10 return the best individual of all populations;

vector V 2i ∈ V 2, which represents the status of all

base stations (see Figure 2). Proportional selection is

adopted based on the fitness of each individual, and

two genetic operators, crossover and mutation, are used

(two-point crossover and uniform mutation). These op-

erators are applied to the selected individuals with fixed

probabilities pc and pm, corresponding to the crossover

and mutation operators, respectively.

Harmony Search (HS) algorithm is one of the re-

cent additions to the metaheuristics search techniques

for combinatorial optimization problems [10]. This al-

gorithm is inspired by the improvisation process that

musicians do to find the optimum harmony [13]. Each

candidate solution is represented as an n-dimensional
harmony. The initial harmonies, usually randomly fed,

are stored in a harmony memory (HM). A harmony is

composed of musical notes which, in turn, represent the

variables of the problem to solve (in our case, status of

the base stations turned off, and turned on).

The HM has a fixed size hms, and it stores the har-

monies ordered according to the objective function val-

ues. A new harmony can be generated using a certain

probability from either the elements in the HM or by a

tone adjustment of a harmony in HM, which consists of

the incorporation of a distinct musical note. The new

solution is compared with the worst harmony in HM,

if the new one improves the objective function (f(x)),

then it replaces the worst in HM . Otherwise, there are

no changes in HM . At the end, the best harmony is

returned. Algorithm 2 shows the HS pseudocode.

Simulated Annealing (SA) algorithm is a procedure

for solving combinatorial optimization problems [26].

This algorithm is inspired by the physical/chemical pro-

cess to produce certain alloys of metal, glass, or crys-

Algorithm 2: Harmony search.

Data: hms,HM [hms], hmcr, par // hms No. of
candidate solutions, HM [hms] list of candidate
solutions, hmcr probability of selecting a note
in HM , par probability of selecting a neighbor
tone

Result: the best harmony of all harmonies
1 t← 0;
2 Step 1 Initialize the HM [hms] randomly with

hms harmonies;
3 Step 2 Calculate the value of the objective

function f(x) for each harmony;
4 while t ≤ iterationsmax do
5 t← t+ 1;
6 Step 3 Sort HM according to the value f(x);
7 Step 4 improvise a new harmony pt+1 and

calculate its value f(x);
8 pt+1 = ∅;
9 for i = 1 to |B| do

10 r = [0, 1] uniformly distributed;
11 if r ≤ hmcr then
12 pt+1

n = select a value within HM ;
13 if r ≤ par then
14 take the next value, above or

below the selected value in line

12;

15 end

16 end
17 else
18 pt+1

n = allowed range of variables

values out of HM ;

19 end

20 end
21 Step 5 update HM ;
22 if f(pt+1

n ) > f(HMworst) then
23 include pt+1

n ) in HM and exclude

HMworst of HM ;

24 end

25 end

tal. During the annealing process, these materials are

heated to a specified temperature and then cooled at a

very slow and controlled rate, until they solidify into

a perfect crystalline structure. In the searching pro-

cess, the SA algorithm accepts not only better, but

also worse neighboring solutions with a certain prob-

ability, in order to escape from local optima. Similarly

to the previously reviewed metaheuristics, an SA solu-

tion represents the status of all base stations. The SA

pseudocode is shown in Algorithm 3.

5 Fast and Efficient Cell Assignment

In this section, we describe the proposed heuristic ap-

proach to address the cell assignment problem in het-

erogeneous networks. It consists of an optimization pro-

cess that finds the minimum number of BSs that meet

the service requirements for the greatest number of users.
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Algorithm 3: Simulated annealing.

Data: Temp, α, iterationsmax// T initial
temperature, α temperature-decrement value,
iterationsmax number of max iterations

Result: the best solution found
1 t← 0;
2 Step 1 create a initial solution x ;
3 Step 2 Initialize Temp with a large value.;
4 while t ≤ iterationsmax do
5 t← t+ 1;
6 Step 3 Apply a random perturbations to the

state x, x
′

= x+ δx;

7 Step 4 Evaluate x
′
;

8 if f(x
′
) > f(x) then

9 x← x
′
;

10 end
11 else
12 accept the new state with probability

P = e
f(x)−f(x

′
)

Temp ;

13 end
14 Step 5 Update the temperature taking into

account α,temp = temp ∗ α.;

15 end
16 return the best solution found ;

5.1 Cell Assignment Overview

To devise a solution for the cell assignment problem,

we propose a heuristic algorithm based on the one pro-

posed in [21]; namely, we opted for changing the BSs

contained in B to reevaluate the number of satisfied

users, instead of altering the users between assignments.

For this reason, the algorithm focuses on finding the

subset B′ ⊆ B achieving the best assignment.

The cell assignment approach presented in this pa-

per differs from the state of the art (including [21]) in

that it appropriately deals with the critical nature of

heterogeneous environments, where the base stations

have different capacities (e.g. power, resource blocks,

etc) and the users have different rate requirements. In

addition, our work considers the joint user assignment

and resource allocation problem, exploiting a realistic

model, with varying interference, which in turn is pro-

portional to the amount of resources that are allocated

in the assignments.

To handle the cell assignment problem, we adopted

two specific representations: one for the user assign-

ment, and another for the set of turned-on base sta-

tions. Each assignment solution is depicted by a vector

V of size |V | = |U| (number of users in the scenario).

The element Vi ∈ V holds the index j|j ∈ {1, 2, ..., |B|}
of the base station assigned to user i.

In the same way, the second representation is a vec-

tor V 2 of size |V 2| = |B| (number of BSs in the sce-

nario), where each position V 2i ∈ V 2 represents the

status of the base station (0.- turned off, and 1.- turned

on). An example of both representations is shown in

Figure 2.

With the objective to determine the quality of each

solution, we considered the following ordered list of cri-

teria for the evaluation function:

– Maximize the number of satisfied users.

– Minimize the number of turned-on base stations.

– Maximize the profit (utility - cost).

Base station 1 Base station 2

User 1 User 2 User 3 User 4 User 5 User 6

1 1 1 2 2 2

User 1 User 2 User 3 User 4 User 5 User 6

Assignment solution encoding

Base stations turned on “solution encoding”

1 1

BS1 BS2

1.- Turned on

0.- Turned o!

Fig. 2 Solution encodings

5.2 Detailed Description

Algorithm 4: Outline of the proposed algorithm

- ExCAP-Het.
Data: Users, requirements and location. Base

stations, capacity and location.
Result: The best found assignment s∗.

1 /* THE BEST ASSIGNMENT USING N */

2 s∗ = Assignment(Users,BS);
3 /* TURN OFF OF BASE STATIONS */

4 s∗ = TurnOff(s∗);
5 return s∗;

In this section we describe the ExCAP-Het algo-

rithm proposed in this paper. For readability purposes,

the outline of the ExCAP-Het algorithm is depicted
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(high level perspective) in Algorithm 4. The details of

the two main functions, namely the Assignment (see

line 2 in Algorithm 4) function and the Turn-off func-

tion (see line 4 in Algorithm 4) are described hereafter.

5.2.1 Assignment Function

This function determines which base stations should be

turned on (B′ ⊆ B). It also finds the best assignment,

i.e. the one that meets the requirement of the maximum

number of users at the lowest cost.

The following steps are needed to obtain and eval-

uate a particular assignment.

1. Determine the Distance Matrix. In this step,

we calculate the distance of each user to every base

station. Line 2 of Algorithm 5.

2. Determine the LoS Matrix. To know whether

or not user i has a line of sight (LoS, NLoS respec-

tively) to base station j, the heuristic computes the

probabilities for every user-base station pair, con-

sidering the probability functions of Table 3. Line 4

of Algorithm 5.

3. Determine the Power Matrix. In this step, the

heuristic computes for each user the power received

from each base station, γi,j , taking into account the

LoS Matrix and the propagation loss. We consider

a propagation model for each type of BS (see Table

2). Line 5 of Algorithm 5.

4. Pre-assign users to base stations. The heuristic

pre-assigns each user to the base station with the

highest received power. The base stations that have,

at least, one assigned user is considered to be turned

on. These base stations create the subset (B′ ⊆ B).

Lines 6-7 of Algorithm 5.

5. Calculate the SNR and Resource Blocks (RB).

In this step the heuristic performs a resource allo-

cation to satisfy demand under ideal conditions, i.e.

without interference. Lines 9-11 of Algorithm 5.

5.1. Determine the SNR Matrix. First, the heuris-

tic calculates the value of SNR received by user

i from base station j without considering the in-

terference from the rest of the base stations in

the system: SNR =
γij
σ2 .

5.2. Determine the RB needed. Then, we com-

pute the resource blocks needed by the base sta-

tion j to meet the demand of assigned user i,

taking into account its value of SNR.

6. Calculate the real values of the pre-assignment

with interference. We calculate the RB needed to

meet user demand using the SINR, i.e. mutual in-

terference is considered. Matrix Lines 13-16 of Al-

gorithm 5

6.1. Determine the SINR Matrix. We calculate

the SINR received by each user (see Eq. 2), tak-

ing into account the interference generated by

the other turned-on base stations and the re-

source blocks calculated in step 5.2.

6.2. Determine the RB needed. We recalculate

the resource blocks (RBs) needed by the base

station j to meet the demand of assigned user

i, taking into account the SINR value (i.e. con-

sidering mutual interference).

6.3. Determine the values of thermal noise. We

calculate the thermal noise figure considering the

percentage of resources blocks needed by the base

station j to meet the demand of user i.

6.4. Determine the SINR Matrix. We calculate

the SINR received by each user (see equation 2),

taking into account the interference generated by

the other turned-on base stations, the thermal

noise and the resource blocks calculated in step

6.2.

7. Assign users iteration. The capacity of the BSs

may be exceeded due to many factors: large number

of users, high interference causing the provision of

more RBs, far away users, etc. The algorithm per-

forms iterations to reallocate users who cannot be

served due to the lack of resource blocks. Lines 17-19

of algorithm 5

Table 2 Propagation models

Scene Range (m) L (dB) σ (dB)

MaNLoS 10 ≤ d ≤ 5000
139.1033 + 39.0864·

6
(log10 (d)− 3)

MaLoS
10 ≤ d ≤ 328.4211 36.2995 + 22 · log10 (d) 6

328.4211 ≤ d ≤ 5000 40 · log10 (d)− 10.7953 4

PiNLoS 10 ≤ d ≤ 5000
145.48 + 37.5·

3
(log10 (d)− 3)

PiLoS 0 ≤ d ≤ 600
103.8 + 20.9·

6
(log10 (d)− 3)

Table 3 Probabilities of line of sight

BS Probability function based on distance

Macro PLoS = min
(
18
d , 1

)
·
(

1− e
−d
36

)
+ e
−d
36

Pico PLoS = 0.5−min
(

0.5, 5 · e
−156

d

)
+min

(
0.5, 5 · e

d
30

)

The iterative procedure designed to re-assign users

when the resources of a base station are exceeded is

described hereafter (see Algorithm 6).

1. Make up the subset B from those base stations that

have available resources. Line 2 Algorithm 6.
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Algorithm 5: Assignment function.

Data: The location of each user and base station, and
the base stations considered for the assignment.

Result: An optimal assignment s using all nearest
base stations to each user.

1 /* IDEAL VALUES (WITHOUT INTERFERENCE) */;
2 ObtainDistanceMatrix(Users,BS);
3 /* DETERMINE THE LINE OF SIGHT (LoS)

PROBABILITY */;
4 ObtainLosProbabilities(Users,BS);
5 ObtainPowerMatrix(Users,BS);
6 s = AssignmentToHighestPowerBS(Users,BS);
7 TurnedOnBS = TurnOnBS(s);
8 /* CONSIDERING ONLY THE TURNED ON BS WITHOUT

INTERFERENCE */;
9 ObtainSNRmaxMatrix(Users, TurnedOnBS);

10 /* CONSIDERING THE PRE-ASSIGNMENT MATRIX */;
11 ObtainNeededRB(s);
12 /* REAL VALUES (WITH INTERFERENCE) */;
13 ObtainSINRMatrix(Users, TurnedOnBS);
14 /* CONSIDERING THE PRE-ASSIGNMENT MATRIX */;
15 ObtainNeededRB(s);
16 ExceededBS=CalculateCosts(s);
17 /* REASSIGNMENT USERS */;
18 if |ExceededBS| > 1 then
19 s = ReassignmentUsers(s);
20 end
21 return s;

2. For all base stations that exceeded resources repeat

Steps 1.1 and 1.2. Line 3 Algorithm 6.

2.1. Sort assigned users in ascending order with re-

spect to costs.

2.2. “Select best users” (i.e. those with highest SINR)

and put aside those who cannot be served due

to lack of resources (RBs).

3. If |B| ≥ 1 execute Steps 3.1 and 3.2. Lines 7-16

Algorithm 6.
3.1. Reallocate users without service to the base sta-

tion (from B) with the highest SINR.

3.2. Reset all system values and recalculate them,

considering the new user allocation.

4. If any base station of B exceeded its resources go to

Step 1.

5.2.2 The Turn Off Function

After the Assignment function finds the best assign-

ment s∗ from the set B, the algorithm tries to outper-

form the solution (B′ ⊆ B) turning off BSs from B′ .
Therefore, a new set (B′′ ⊆ B′) is found as a result of

turning off the base station i, ∀i ∈ {1, 2, ...,
∣∣∣B′ ∣∣∣} base

station.

On each iteration, this function turns off one BS

from the set B′ , such that
∣∣∣B′′∣∣∣ =

∣∣∣B′ ∣∣∣ − 1, then the

assignment s
′′

(from B′′) is compared with the best

Algorithm 6: Outline of the ReassignmentUsers

function.
Data: The current assignment s.
Result: A new assignment for users that were not

served by lack of resources.
1 while |ExceededBS| > 1 do
2 B = IdentifyAvailableBS(TurnedOnBS);
3 NonServedRB = SelectBestUsers(ExceededBS);
4 if |ExceededBS| == 0 OR |B| == 0 then
5 break;
6 end
7 s = ReassignmentToSINRmax(NonServedRB,B);
8 ResetSystemValues();
9 /* CALCULATE THE IDEAL VALUES */;

10 ObtainSNRmaxMatrix(Users, TurnedOnBS);
11 ObtainNeededRB(s);
12 /* CALCULATE THE REAL VALUES */;
13 ObtainSINRmaxMatrix(Users,RB, TurnedOnBS);

14 ObtainNeededRB(s);
15 ObtainTN(s,RB);
16 ObtainSINRMatrix(Users,RB, TN, TurnedOnBS);

17 ExceededBS = CalculateCosts(s);

18 end
19 return s;

solution s∗. If the solution s
′′

improves the best solution

s∗, the best solution is updated and B′ is also updated

with the set B′′ of the new solution s∗. The algorithm,

including the turn off iterations with the updated set

B′ , is shown in Algorithm 7.

The above procedure is based on the fact that turning-

off a base station may result in lower interference among

the remainder set B′ , improving the SINR of users and

reducing the number resource blocks needed for BSs to

serve users, and consequently increasing the number of
served users.

6 Evaluation Setup

This section describes the evaluation setup. We initially

describe the testing instances and their characteristics.

Following on, we describe the execution platform used

to carry out the analysis and finally, the metaheuristics

parameters used to generate the data for comparing the

performance of our metaheuristic approach.

6.1 Scenario Parameters

The simulations have been run in 16 different testing

instances (see Table 4). Each instance is composed of

the set B, with two subsets of base stations B1∪B2 = B,

consisting of Macro and Pico Base Stations respectively.

On the other hand, users U were increased from 50 to
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Algorithm 7: Outline of the TurnOff function.

Data: The turned-on base stations from s∗.
Result: The best-found assignment s∗.

1 repeat
2 Improved = 0;
3 TurnedOnBS = TurnOnBS(s∗);
4 forall TurnedOnBS do
5 /* TURN OFF EACH BS FROM s∗ */;
6 TurnedOnBSnew =

TurnOffBS(TurnedOnBS);
7 s = Assignment(Users, TurnedOnBSnew);
8 Profit = ObtainProfit(s);
9 if NumOfServedC > NumOfServedC∗ then

10 s∗ = s;
11 Improved = 1;

12 else
13 if NumbOfServedC == NumbOfServedC∗

AND Profit > Profit∗ then
14 s∗ = s;
15 Improved = 1;

16 end

17 end

18 end

19 until Improved = 0 ;
20 return s∗;

200 in each subset of B for the different instances. All

users had fixed capacity demand of 1.75 Mbps.

Table 4 Testing instances characteristics.

Instance
# Users # BSs

Macro Pico Macro Pico

1 50 50 7 20
2 50 100 7 20
3 50 150 7 20
4 50 200 7 20
5 100 50 7 20
6 100 100 7 20
7 100 150 7 20
8 100 200 7 20
9 150 50 7 20
10 150 100 7 20
11 150 150 7 20
12 150 200 7 20
13 200 50 7 20
14 200 100 7 20
15 200 150 7 20
16 200 200 7 20

The number of BSs used for the experiment was set

to |B| = 27, 7 were Macro BSs, while the rest were

20 Pico BSs. Figure 3 illustrates the locations of the

Macro base stations, while the Pico BSs were randomly

placed in the red square between the Macro BSs in the

lower-right quadrant of the Figure. Each Macro BS had

coverage of 4.5 Km, and each Pico one had a limited

coverage of 600 meters. The users were randomly placed

on the covered area by the Macro and Pico BSs. Table

5 summarizes the parameters used in each testing in-

stance.

Fig. 3 Locations of users and base stations.

Table 5 Scenario parameters

Parameter Value

Scenario parameters
Central frequency (fc) 2.6 GHz
Avg. streets width (W ) 20 m
Avg. buildings height (h) 20 m
Avg. base stations height (hBS) 25 m
Avg. user terminals height (hUT ) 1.5 m

Device parameters
BS Tx gain (GTX) 15.0 dB
UT Rx gain (GRX) 0.0 dB
(MCL) −70.0 dB
Macro Tx power (PTXMA

) 46.0 dBm
Pico Tx power (PTXPI

) 36.0 dBm
Noise parameters

Thermal noise density (f) −173.9772 dBm
Noise figure (NF ) 6.0 dB

Thermal noise figure (TN)
NF + 10 ∗ log10 ∗

(αi,j ∗ 180khz) + f
Control Overhead (CO) 1.0 dB

6.2 Execution Platform

ExCAP-Het and the metaheuristics algorithms were im-

plemented in C programming language following c99

standard (compilation has been done with GCC-4.6.3 ).

For statistical validation purposes, we executed thirty-

one runs of each algorithm for each instance of Table 4.

This analysis demands a considerable amount of com-

puting resources. For this reason, the experiments were

carried out in a platform with 64 cores Intel Xeon CPU

E5-4620 2.20GHz, 512 GB RAM, and Ubuntu 14.04

LTS 64-bit Operating System.
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6.3 Metaheuristics parameters

The parameters used for the metaheuristic algorithms

are: crossover probability pc = 0.9, and a mutation

probability pm = 0.05 for the genetic algorithm. For

harmony search, we set the probabilities of selecting a

note in HM (hmcr) and selecting a neighbor tone (par)

to 0.9 and 0.1, respectively. The population size for both

metaheuristics was set to 10. The temperature used

for simulated annealing was 100, and the temperature-

decrement value was 0.88. We set the stop criterion in

1000 evaluations of the objective function to make a

fair comparison.

7 Evaluation Results and Discussion

This section presents the cell assignment results, a sta-

tistical analysis of the assignment results and a com-

plexity discussion to justify the outperforming perfor-

mance of the proposed approach.

7.1 Cell assignment results

All instances were executed using our algorithm with

two versions: (1) ExCAP-Het without using the TurnOff

function, which is similar to a standard best-effort solu-

tion (No switching off cells); (2) ExCAP-Het using the

TurnOff function (Switching-off cells). Then, we com-

pared our algorithm with the three metaheuristics de-

scribed above, all solving the optimization problem.

To analyze the results, we grouped the test instances

according to the amount of users located in each macro
cell, yielding four groups: small density - 50 users in

instances 1 to 4; medium density - 100 users in instances

5 to 8; high density - 150 users in instances 9 to 12; and

very high density - 200 users in instances 13 to 16. For

each group, inside the area covered by the pico cells

we placed 50, 100, 150 and 200 users yielding sixteen

test instances (see Table 4). The metrics used in this

paper are the percentage of served users, profit, energy

savings (active cells), and execution time.

The average number of served users after 31 exe-

cutions of the five algorithms is graphically depicted

in Figures 4 to 7. The results show that the perfor-

mance of all algorithms worsens when the number of

users increases. We can see that the algorithm with the

worst performance in most tests is the one labelled as

No switching− off . The algorithm with the best per-

formance according this metric is based on the meta-

heuristic harmony search “HS”, with a slightly bet-

ter performance in instances 5 and 13 (tests with the

lowest number of users in pico cells). Otherwise, the

“HS” approach and the genetic algorithm, “GA”, ex-

hibit the same performance, and compared with our

turn-off function Switching− off approach, their per-

formance is rather alike. Even in tests instances 5 and

13, our approach is very competitive in the average

number of served users metric. More importantly, our

approach shows a slightly better performance in in-

stances 2, 6, 7, 11 and 16. This demonstrates that it

is efficient in terms of the quality of assignments pro-

duced, when compared with metaheuristic-based ap-

proaches, which are known to yield efficient assignments.
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Fig. 4 Comparison of served users in instances 1 to 4.
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Fig. 5 Comparison of served users in instances 5 to 8.

Figures 8 to 11 show the average of 31 executions of

the algorithms in terms of the profit metric. At a first

glance, the worst performing algorithm in this metric is

the No−switching−off in all instances, which means

that it is unable to properly manage the resources.

On the other hand, our Switching − off approach

presents very competitive results in this metric, out-

performing in all instances the HS-based approach, and

performing very close for most instances to the SA- and

GA-based schemes. It is worth mentioning that both,

the metaheuristic and our Switching − off approach

present the same behavior in this metric, which means

that our switching-off approach succeeds in managing
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Fig. 6 Comparison of served users in instances 9 to 12.
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Fig. 7 Comparison of served users in instances 13 to 16.

the resources similarly to the metaheuristic-based ap-

proaches, albeit exploring a small fraction of the search

space in the combinatorial problem, as we will see in the

execution time results. The small differences in the per-

formance of the metaheuristic-based and our Switching−
off approach in this metric are due to the different

assignments found by each algorithm, i.e. assignments

with the same number of users can have different costs

to meet users’ demand. The algorithm with the best

performance in more instances is based on a genetic

algorithm (GA).
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Fig. 8 Comparison of profit in instances 1 to 4.

The performance results in terms of the metric active-

cells are depicted in Figures 12 to 15. The results show
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Fig. 9 Comparison of profit in instances 5 to 8.
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Fig. 10 Comparison of profit in instances 9 to 12.
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Fig. 11 Comparison of profit in instances 13 to 16.

that the No − switching − off algorithm needs more

base stations than the other algorithms to satisfy a

lower number of users in all instances, which involves

a high energy consumption. For this reason the No −
switching − off is the algorithm with the worst per-

formance for this metric. The algorithm with the best

performance in almost all instances is the GA. However,

our approach has practically the same performance than

the GA algorithm in instances 2, 3, 7, 10, 12, 15 and

16. In instances like 3, 4, 7, 8, and 15, the best al-

gorithm was the simulated annealing “SA” approach,

which yields poor results, like the No−switching−off
approach in the served users metric. Finally, it is im-

portant to mention that our algorithm outperforms the

“HS” algorithm in all cases, which in turn produced

slightly better results in the served users metric.
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Finally, we present results of how much time is spent

(execution time) on average for each algorithm, to solve

each instance (see Figures 16 to 19). In terms of this

metric, we can see that all metaheuristics have a high

time consumption in comparison with the approach pro-

posed in this paper, with a difference of an order of

magnitude. This demonstrates that our Switching −
off approach is efficient, yielding similar results to tra-

ditional metaheuristic-based solutions in key metrics

like served users, profit and active cells, while requiring

much shorter time. Considering the metric execution

time, the best algorithm is No− switching− off , and

the worst is the metaheuristic harmony search (HS).

Nevertheless, lower execution times are signs of better

performance in such metric only. Low times do not nec-

essarily lead to better cell assignments, better profit or,

better energy-savings.
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Fig. 13 Comparison of active cells in instances 5 to 8.

7.2 Statistical Analysis

This section presents a formal analysis of the results

provided to determine if there is a significant difference

between the performance of the studied algorithms. For

this purpose, we have used statistical significance tests.
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250 300 350 400

20

25

# users

#
a
ct

iv
e

ce
ll
s

HS No switching OFF

GA Switching OFF

SA

Fig. 15 Comparison of active cells in instances 13 to 16.
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Fig. 16 Comparison of execution time in instances 1 to 4.
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Fig. 17 Comparison of execution time in instances 5 to 8.

Our intention here is to analyse and detect statistical

significance on the performance of the algorithms for

each metric. To accomplish this, we applied the Fried-

man test [12], which is a non-parametric statistical test



Fast and Efficient Energy-Oriented Cell Assignment in Heterogeneous Networks 15

200 250 300 350

10−1

100

101

102

# users

E
x
ec

u
ti

o
n

ti
m

e
[s

]

HS No switching OFF

GA Switching OFF

SA

Fig. 18 Comparison of execution time in instances 9 to 12.

250 300 350 400

10−1

100

101

102

# users

E
x
ec

u
ti

o
n

ti
m

e
[s

]

HS No switching OFF

GA Switching OFF

SA

Fig. 19 Comparison of execution time in instances 13 to 16.

that detects differences in treatments across multiple

attempts.

The procedure of Friedman test begins by rank-

ordering the algorithms (1 to k algorithms) for each

instance (row). The smallest score corresponds to the

algorithm with the best performance, and the biggest

score to the algorithm with the worst performance. To

detect an overall statistically significant difference be-

tween the performance of the algorithms, a hypothesis

and its corresponding null hypothesis are formulated:

the null hypothesis (H0) suggests that all sets of ranks

come from algorithms with identical performance, i.e.

the algorithms do not have a statistical significance dif-

ference. The alternate hypothesis (Ha) holds that, at

least, one algorithm has a different performance. Fi-

nally, a significance level of α = 0.05 is considered.

For each metric, we applied the Friedman test to

find out whether there is statistical difference between

the algorithms and to rank their performance. The av-

erage rank of the Friedman test obtained by the algo-

rithms in each metric is shown in Table 6. The algo-

rithms with the best performance for each metric are

underlined and in bold. The Friedman test proved that

the algorithms in all metrics have statistically different

results. However, we only know that there are differ-

ences somewhere between the related algorithms, but

we do not know exactly where those differences lie. To

examine where the differences actually occur, we ap-

plied the Wilcoxons test to our data, using the Bon-

ferroni adjustment [4], to detect the algorithms that

perform significantly different compared with the per-

formance achieved by the best algorithm in each metric,

namely “HS” in served users, “GA” in profit and active

cells, and No− switching − off in execution time.

Table 6 Average ranks of Friedman test for each metric

Metric
Algorithms

GA SA HS Off No off

Served users 2.44 4.44 1.66 1.91 4.56

Profit 1.75 1.94 3.94 2.38 5.00

Active cells 1.44 1.88 4.00 2.69 5.00

Execution time 3.88 3.44 4.69 2.00 1.00

The results of this test are presented in Table 7.

Each cell in this table compares the algorithm for such

column with the best algorithm of the row (metric). For

example, consider that we want to compare algorithms

A and B, the latter being the best in a given metric.

If a significant performance difference exists between A

and B for a particular metric, the corresponding cell of

algorithm A is marked with 3 otherwise it is marked

with 7.

Table 7 Statiscally significant difference and performance
rank of algorithms for each metric

Metric
Algorithms

GA SA HS Off No off

Served users 2.44 7 4.44 3 1.66 1.91 7 4.56 3

Profit 1.75 1.94 7 3.94 3 2.38 7 5.00 3

Active cells 1.44 1.88 7 4.00 3 2.69 3 5.00 3

Execution time 3.88 3 3.44 3 4.69 3 2.00 3 1.00

The Bonferrioni statistically significant test shows

that our Switching − off approach does not perform

significantly different compared to the algorithms with

the best performance in key metrics like served users

and profit. This is of particular relevance because it

demonstrates that our heuristic approach yields a per-

formance comparable to the best metaheuristic-based

approaches in these key metrics. Regarding the active

cells metric, our Switching − off approach performs

significantly different to the best metaheuristic (GA),

which in turn performs similar to “SA” metaheuristic.

Moreover, our Switching − off approach outperforms

metaheuristic “HS” and, naturally, theNo−switching−
off solution with statistical significance in the active

cells metric. Finally, our approach is significantly faster

than all traditional metaheuristics.
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7.3 Computational complexity

During the executions of the algorithms, the compu-

tations of all the elements in the model described in

Section 3 are carried out in the same manner for all the

algorithms evaluated (i.e. ExCAP-Het and the three

metaheuristics). For the optimization problem addressed

in this paper, the pivotal element that determines the

complexity of the algorithms is the procedure for deter-

mining the base stations that are on and off.

ExCAP-Het defines an initial pre-assignment (based

on the SINR of each user), which will determine a set

of base stations that will be initially on. From this

set, ExCAP-Het proceeds to turn off base stations on

a one-by-one basis. For example, if an assignment un-

der evaluation has 5 active base stations, BS 1 would

be switched off, and the assignment would be evalu-

ated with the remaining 4. If the evaluation with the 4

BSs is better than the previous best, that assignment

is considered the new best solution. In the next itera-

tion the base station 1 would be turned on again, and

BS 2 would be turned off, to evaluate the assignment

under such conditions, and so on. In the worst case,

the initial assignment would be to turn on all the base

stations, so this process would consist of traversing the

entire set of base stations |B|. On the other hand, if

an improvement occurs when switching off a given base

station, the previous process will be repeated with the

reduced subset B′ = |B|− 1. In the worst case, the sec-

ond process will be repeated until the subset is equal

to 1, that is, when all base stations are turned off ex-

cept one, which in turn would cause the evaluation to

be executed |B| times. Based on the above, the com-

putational complexity of ExCAP-Het would be in the

worst case O((|B|2A) +A) = O(|B|2A), where B is the

subset of base stations and A is the cost of the initial

allocation.

Due to their search space exploration nature, meta-

heuristics perform a number of evaluations of the ob-

jective function given by the product of the population

size and the number of generations. The metaheuris-

tics use a binary representation for the base stations

in on mode. Thus, in the worst case, the metaheuris-

tic can generate all possible binary chains of size |B|,
that it 2|B| evaluations. Therefore the computational

complexity of the metaheuristics are in the worst-case

O((2|B|A)), where |B| is the number of base stations and

A is the cost (constant) of evaluating an assignment.

8 Concluding Remarks and Future Work

This paper has presented a fast and efficient cell as-

signment approach for heterogeneous networks with en-

ergy expenditure reduction to foster cell switching off.

A joint cell assignment and resource allocation model

was defined as a pivotal element for the formulation of a

complex combinatorial optimization problem. The pro-

posed solution is intended to be applied in centralized

systems such as those brought by C-RAN and SDN. To

solve the problem, a heuristic was defined to address the

optimization problem, which has also been solved with

three of the most widespread metaheuristics, namely

Genetic Algorithm (GA), Harmony Search (HS) and

Simmulated Annealing (SA). Through extensive simu-

lations and formal statistical analysis we have demon-

strated that it is possible to achieve cell assignments

close to the optimum, compared to those achieved with

metaheuristic-based approaches at much lower execu-

tion times, thus favoring practical applicability. Con-

cretely, our heuristic approach allows the production of

cell assignments of the same quality as those provided

by the metaheuristic of the best performance in key

metrics like served users and profit. Regarding energy

expenditure reduction, our heuristic provides competi-

tive results, yielding energy-savings comparable to the

three metaheuristics evaluated. Overall, we have shown

that the performance of the proposed heuristic is simi-

lar to the best metaheuristic approach, with statistical

significance at much lower execution times.

Our future work will be directed towards exploring

other approaches to maximize the performance of the

cell assignment problem as well as evolving the prob-

lem into a multi-objective one, to explore other com-

putational methods to maximize the use of radio re-

sources. In addition, part of our future work will be to

analyze the performance of the cell assignment in more

complex scenarios. In particular, we will include elastic

services and users with multiple traffic demands, which

undoubtedly would increase the complexity of the prob-

lem. We will also consider other aspects such as mobil-

ity and handovers, which may have a strong impact

on the users perceived QoS, and which would impose

additional constraints to our problem instances. The

proposed scheme will be used to solve individual snap-

shots, where both user positions and their willingness

to establish a connection will be updated based on the

corresponding mobility and traffic patterns. Other use

cases, also leveraged by SDN, such as the one discussed

in [28], will be also considered.
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